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ABSTRACT

We have implemented the method on a real-time, high-speed, Pipelined Image Processing Engine (PIPE), which
processes sixty image frames per second.  For the PIPE implementation, a horizontally moving camera is used, which
produces optical flow along a scan line,

1. INTRODUCTION

Biological vision systems are so powerful that researchers, fascinated by it, are trying to develop artificial vision
Systems. Significant progress has been made since the advent of digital computers. Severai approaches are being fol-
lowed to obtain usefu! data from artificial vision systems. One such technique is to process a sequence of images to
obtain optical flow, the motion of brightness patterns in the image. This has the potential to provide visual information
such as distance, shape, surface orientation, and boundaries, which are yseful in applications like target acquisition,
path planning, passive navigation, etc.

puted in real time, In section 2, we dafine differential range and optical flow and state some assumptions that can be
used to mathematically mode] the optical flow. We show that the problem is ill-posed. We also show how the problem
can be regularized by making an assumption about the direction of motion. In section 3, we give a brief description of
Pipelined Image Processing Engine (PIPE), a parallel processing computer that processes images at video rate, Section

2. MOTION FIELD AND OPTICAL FLOW
When the image of an object is formed on the image plane of the camera, every point P, on the object results in
a comresponding point P; in the image. If P, moves with a velocity v, in the real world, then P; moves with a velo-
city v; in the image plane, Thus, all points on the object have a corresponding velocity vector in the image. These
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velocity vectors constitute the motion field. As the object moves, the brightness patern in the image plane also moves.
The apparent motion of the brightness pattern is known as optical flow. In an ideal situation, this corresponds to the
motion field

Let us define two types of motion: local motion, which is the motion of the objects in the environment, and
global motion, which is the motion of the camera itself. If the velocity V of the camera and its focal length f are
known, the depth 4 ofanobjectt'rommecanmcmbeobtainedusingmefollowingequaﬁon.

d=—-uﬂ (1)

If there are two objects O and O, at depths 4, and dj, respectively, from the camera, with d;>d,, and they
induce optical flow values u; and u, then we can derive the following from Equation (1):
di~d; ;4
S
We define Equation (2) as the differential range. The reasons why we calculate this function are
(i) Equation (2) is independent of V and f s0 that calibration of the camera is not required, and
(i) we would like to determine the minimum distance between two objects that can be discriminated using optical
flow.
The optical flow can be mathematically modelled and used as an estimate of the motion feld, but this requires
certain assumptions which are listed below.

1.  The apparent velocity of brightness pattemns can be directly identified with the movement of the surfaces in the
scene.

2.  The surface being imaged is flat, and thus there is no variation in brightness due to shading effects.
3. Incidental illumination is uniform across the surface.

Under these assumptions, the brightness at a point in the image is proportional to the reflectance of the surface at
the corresponding point on the object. As the reflectance varies smoothly and has no discontinuities, the image bright-
ness is also continuous, and hence differentiable. This property of the image intensity is used by gradient based
methods to determine the optical flow. A well known gradient based method is the Hom and Schunk method,® where
the image intensity function 7(x,y,t) in the image plane at a point (x.y) and at time ¢ is expanded using Taylor’s
series and used to computes the optical flow field The total derivative of the image intensity between two image
frames separated by a very small time interval dr is zero,
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It should be noted that this is strictly satisfied only for translation of a rigid body in planes parallel to the image plane.
Using the chain rule of differentiation, Equation (3) can be written as
a a’ £+iﬂ+ﬂ—o
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This can be written as
Lu+l,v+, =0 (5

where & and v are the components of flow velocity in the x and y directions respectively, /; and [, are the spatial gra-
dients, and /, is the temparal gradient. J,, /, and /; can be measured from the image sequence, and the optical flow (s,
v) can be computed. Since we have two unknowns # and v, and one relationship in Equation (5), the problem is con-
sidered ill-posed. Therefore, we need one mare constraint o regularize the problem and to compute the flow field.

There are many different ways of regularizing the problem, and numerous papers have been published on this
subject. Hom and Schunk 6 have developed a robust algorithm by assuming that the apparent velocity of brightness
pattern varies smoothly almost everywhere in the image. There are many choices for the smoothness constraint, like the
first and second derivatives of the intensity or a linear combination of the two derivatives. They have claimed that their
method is insensitive to quantization of brightness levels and additive noise. Several other algorithms have been
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Lu+l, =0
The magnitude of velocity in the x direction is given by

i,
uz—ll-‘-—l (6)

Tlx t+8s -f (x.1—=At)
24
I(x+A.t,r)-l(x-A:.:)

k(x)=

du (i ‘)_!_(L,:H)—I(i,t-l) = femporal dif ference )
TG+ =1 (=1t)  spatial dif ference

until it becomes indaterminate. To find a high signal-to-noise vajue for flow, the flow value at the object boundaries
must be extracted. We achieve this by masking the zero crossings of the Laplacian-Gaussian of the image on the opti-
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3. AN OVERVIEW OF PIPE

PIPE is a2 multi-stage, multi-pipelined image processing machine which may be used as the front-end of a real-
time image understanding system. It was designed specifically for low level vision tasks at very high speed. It was con-
ceived and designed at the National Institute of Standards and Technology (formeriy National Bureau of Standards) by
Kent, et al? and is commercially available through Aspex Incorporated.! It has 8 bit gray scale resolution and operates
on 256>256 images at video rate (60ﬁeldspe:secmd).hcmalsoopaateoninngesoflargcrsiunlowumm.A
complete system can perform over one billion operations per second.

Figure 1 shows the block diagram of PIPE. PIPE consists of the following stages.
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Figure 1: Block diagram of the PIPE system.
(Reprinted with permission from Aspex Incorporated.)

1.  Video Interface Stage: This performs analog to digital conversions for receiving analog signals from sources like
cameras, video tapes, etc. It also performs digital o analog conversions of signals for sending analog outputs to
monitars or other output devices.

2. Input Stage: This contains an input arithmetic logic unit (ALU) and four frame buffers.

3. Modular Processing Stage (MPS): A simplified block diagram of an MPS is shown in Figure 2. All processing in
PIPE is performed in one to eight identical MPSs. The number of MPS stages used depends upon the complexity
of the algorithm. Each MPS has the following.

a. A forward path connecting the output of each stage to the input of the next stage (or the output of the last
stage to the output stage, described later).
b. A backward path connecting the output of each stage to the input of the previous stage (this does not apply
to the first stage). '
A recursive path connecting its output to its own input.

d  Six video buses connecting the output of any stage to the input of any stage. Note that the previous three
paths were local, while the present six paths are global.

o
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Figure 2: Simplified block diagram of a Processing stage,
(Reprinted with permission from Aspex Incorporated.)

Two image buffers for storing images, A complete system can store 16 256256 images in each buffer,

Two neighborhood operators (NOPs) © do any wbitrary 353 or 9x1 convolutions on the complete image,
The NOPs can be arithmetic (ANP), boolean (BNP), or recursive boolean RNP). Figure 3 shows how these
are generated. The BNPs and RNPs are created for each bit plane using logical operators like AND, OR,

NOT, and XOR on the variables shown in Figure 3a. Bit
Plane Equation
A B o b 2 d
1 (A“E) | (B~D)
X EERERE 2[a]2 2 | )| (2D,
3 (A“E) | (B~D)
G H b ¢ 1l 2 1 4 (A*E} | (B~D)
5 {(A“E) | (B~D)
E=£(AB,CDEF,GHI,J  GAUSS.ANP € | AE) i (B-D)
J i3 the result of previeus ® ? (A®E) | (B~D)
cemputatien (Used only dn mNPs)
2CROSS . BNP
()
(©

Figure 3: (2) Equation to geverate NOPs; (b) a sample ANP; (c) & sample BNP.

Four look-up tables (LUTs), one in the forward path (FLUT), one in the recursive path (RLUT), one in the
backward path (BLUT), and one just before the NOPs (PNLUT). These LUTs perform point transforma.
tions on the complete image, such as changing the number system, multiplying each pixel by some con-
stant, thresholding the image, aiid 50 on. Note that the output at any pixel is independent of the values of
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its neighboring pixels. _

h. Two combining ALUs A and B and one output ALU C perform arithmetic and logical operatons on two
images. The operations include addition, subtraction, AND, OR, XOR. Note that the output is a function of
operations performed on pixels at the same location in two different images.

k. One Two Valued Function (TVF) to do arbitrary point-by-point operations on two images such as multipli-
cation, division, trigonometric operations, min/max operations, taking the square root, etc. It is also possible
to do image warping operations such as rotating the image by an arbitrary angle.

4.  Output Stage: This consists of 4 buffers. It is usually used as a display buffer to store images.
S.  System Controller Stage: This consists of a master timing controller, a master program sequencer, and an inter-
face between PIPE and host computers.

PIPE programs are developed using an interactive graphic development environment called ASPIPE, on a PC AT com-
patible computer, and downloaded into PIPE. The look-up tables and neighborhood operators required to program PIPE
are created using a development environment called LUTGEN, hosted by an AT compatible computer. In addition,
there is an Iconic to Symbolic Mapper (ISMAP), which is not used in the present work. For details about ISMAP and
for further details about PIPE, the reader is referred to other references listed in this paper.&9.11-13

4, PIPE IMPLEMENTATION OF THE ALGORITHM
The PIPE algorithm for determining the optical flow has the following steps.
1. Digitization and smoothing of the image
9. Determination of the spatial and temporal differences
3. Gray scale thresholding of spatial and temporal differences
4,  Determination of the optcal flow
5.  Determination and masking of the zero crossings on optical flow
6. Segmentation of optical flow

Figure 4 shows the data flow graph for the algarithm implemented on PIPE. A brief description of the algorithm
is given in the following steps. Each step is identified in Figure 4 using letters in parantheses.

1. Digitization and smoothing of the image: The image obtained from the input source is digitized (256x242) and
represented in two’s compiement form. This introduces sampling and digitization error in addition to the random error
in the measurement process. As we have already mentioned, smoothing reduces both the sysematic error (by reducing
higher order derivatives) and the random error (by averaging). We have used Gaussian operator to smooth the image
both spatially and temporally. We have experimented with 3x3 and $xS Gaussian operators to smooth the image spa-
tially. Since the PIPE can handle only 33 neighborhood operators, 5x5 operator was approximated using products of
two 3x3 operators. A 3x3 Gaussian mask is shown in Figure 3b. Two consecutive 3>x3 masks are used to obtain a 55
mask as shown in Figure 4, (a)~(b). The temporal smoothing was done using a 3x1 operator (not shown in Figure 4).

2. Determination of Spatial and Temporal Differences: The spatial and temporal differences were determined by using
the denominator and the numerator of Equation (8), respectively, The temporal difference was determined by taking the
diffsrence between the first and the third images of a sequence (Figure 4, (c)). The spatial difference was determined
at {d) in Figure 4 using the 3x3 operator SPATIAL shown as insert in Figure 4,

3. Gray scale thresholding: Both the spatial ‘and the temporal differences will be noisy. Therefore, gray scale threshold-
ing is performed on them as follows: .

IF (value < lower_threshold) OR (value > upper_threshold) THEN value =0
ELSE Value =Value

The value can be either the spatial or wemporal difference. In Figure 4, (¢) and (f) show the points where
GTHRESH is used for gray scale thresholding. :
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Figurs 4 : Data flow graph for the algorithm.

P,

ATIAL and OP_FLOW are also shown as inserts
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Theoretically, it is not necessary (o threshold the spatial and temporal differences. But in pracFioe:, itis observed
that these images are noisy, and yield values even at points where there are no significant c_hanges in intensity. These
may give rise to faise optical fiow values and 50 should be eliminated. Figure 5 shows the difference between unthres-

holded and thresholded images.

(a) ® ©
Figure 5: Effect of gray scale threshold on an image. (a) Original image from a sequence of images; (b) Spatial difference
of (a) without gray scaic threshold; (c) spatial difference of (a) with gray scale threshold

4. Determination of optical flow: It is observed that the emror in temporal difference due 0 sampling is a function of
the square of the optical flow.8 Optical flow values significantly greater than one pixel per frame time will have large
errors. Therefore we consider small optical flows only (less that 2 pixels per frame-time). Since PIPE does not handle
floating point numbers, the optical fiow is multiplied by a constant. Here, it is multiplied by 20. The TVF lock up table
OP_FLOW for PIPE implementation of Equation (8) is shown as an insert in Figure 4. Optical flow is determined at
(g) in Figure 4.

§. Determination and masking of zero crossings: The zero crossings are determined by using the operator ZCROSS (see
Figure 3c) on the Laplacian-Gaussian of the image (Figure 4 (h)-(j)). The edges {object boundaries) thus obtained are
masked on the optical flow to obtain optical flow values only on the edges (Figure 4, (k)). The optical flow obtained is
considered to be the best estimate of the optical flow.

6. Segmentation of optical flow: Equation (1) shows that the range is inversely proportional to optical flow. Therefore,
range segmentation can be performed by segmenting the optical flow. Segmentation is performed at (m) in Figure 4
by using the following interactive program from the host computer.
FOR flow = 1TO 255
IF (flow < threshold) THEN intensity =0
ELSE intensity =255
_ Consider two objects O, and O, at depths d; and d,, respectively, with (d; > d,), from the camera. These give
rise to opt_ica] fiow values u; and u, (u; < uy), respectively. We interactively vary the threshold in the program shown
above m:ml the flow due to the object at depth 4, disappears from the scene while the flow due to the object at depth
d, remains, We thus say that we have discriminated between objects O; and O,. By physically measuring the values
d, and d,, we can calculate the range discriminability rq using the following equation obtained from Equation (2).
dy

-
d 2 %100 ©)
1

range discriminability=ry=

5. EXPERIMENTS, RESULTS AND DISCUSSION

A top view of the setup for our experiments is shown in Figure 6. We use an optical that rail has two platforms
as shown in the figure: one translates horizontally and the other rotates about a vertical axis. The camera is mounted on
the platforms as shown. The accuracy of the velocity of translation is within 0.02% of the selected velocity. Objects
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Figure 6: Experimental setup '

{0y, 0,) were Placed at di.ffemt depths from the camera (d;, d3) and the optical flow was determined. Segmentation
was perfonmd on the optical flow and the range dis-criminability was calculated. The experiment was repeated by

was conducted as follows,

T'wo ijects 0, and 0, were placed at depths d; and 4, respectively, with (d, >d,), from the camera as
shown in Figure 6. The threshold for making the optica! flow due to object 0, disappear was determined. Knowing
this, a three-leve| segmentation was performed as follows,

FOR flow =1T0 255

IF (flow < noise~level) THEN inensity = ()

IF (flow < threshold) THEN intensity = 128

ELSE intensity = 25§

This program segments an image in such a way that the image will have an intensity value of 128 for the back-
ground and 255 for the foreground. To determine Noia: 2 5%5 window was used on the entire image, In each window,
the number of points classified as foreground and the number of points classified as background were determined. The
one with a lower value was considered misclassified. N, was calculated using the following equation,

o Jotal number of misclassified ints

= " total number of points in the image
The number of misclassified points N, was least when the image was smoothed both temporally and spatially. N,
was not significantly affected when the temporal smoothing was dropped. Neiw Was seriously affected when the spatial
smoothings were dropped. Thus it was concluded that the noise decreases when smoothing increases. Also, the experi-
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Effect of smoothing an image on N iss

Test# | Type of smoothing | Neiw
1 Spatial only 39
2 Spatial and temporal 23
3 Temporal only 6.6
4 No smoothing 8.7

© (@)

Figure 7: (a) Results using spatia] smoothing caly. {i) one of a sequence of 3 input images; (ii} optical flow for (i); (iii}
optical flow masked with zero crossings. (b) Similar tesults using both spatial and temporal smoothings. (c) Final result as
in a(iii) with temporal smoothing only. (d) Final result as in a{iii) without any smoothing.

If apriori knowledge of the environment is available, the PIPE implementation of Equation (8) can be changed to
obtain maximum range discriminability. Let us assume that we have a situation where the farther object Oy is at a
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depth d; from the camera, and let the optical flow corresponding to this depth be 4. Let 4, and x_ be the correspond-
ing values for the nearer object 0,. Knowing #r and u,, the output optical flow can be scaled with a look-up table in
PIPE © obtain maximum range discriminability. For example, suppose a table at a depth d; from the camera has
objects of various thicknesses lying on it If the maximum thickness of the objects is known, then the systemn can be

This technique was used by the authors on the image shown in Figure 8a. In this experiment, a tree in the fore-
ground and a railroad car in the background were used. The optical flow was determined and passed through look-up
tables to reduce the noise further, The output was thresholded o eliminate the background, and it was passed through
expand and shrink operators. When the optical flow values corresponding to the edges of the foreground is passed
through the expand operators, the optical flow spreads around the edges, and the optical flow at all these points

ground (Figure 8¢).

(a) (®) (¢}
Figure 8; Image Segmentation using expand and mask lechnique. (a) Original image in an image sequetice; (b} Threshold-
ed optical fiow of (a); () Expanded mask of (b) masked on (a).

All the experiments described above, except the one where expand and shrink operators were used, computed
optical flow in real-time, with an update rate of 30 frames per second and a pipeline latency of 386 of a second. The
progra.mwimexpandmdshﬁnkoperatorshadmupdnermoflﬁﬁ-mspersecond.

6. CONCLUSION

The determination of optical flow using gradient based methods is an ill-posed problem. The assumption that the
direction of camera motion is known regularizes the problem so that gradient methods can be used successfully, The
algorithm can be easily implemented on PIPE, and the results can be obtained in real time. Since the gradient methods
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using expand and shrink operations, the optical flow can be expanded and masked on the original image, thus segment-
ing the whole image. Although determining the optical flow at every instant of time gives good results, the accuracy of
the method can be increased significantly by using temporal integration techniques.
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